考研数学之概率与数理常考题型
作者:佚名       时间:09-09

  考研数学解答题主要考查综合运用知识的能力、逻辑推理能力、空间想象能力以及分析、解决实际问题的能力,包括计算题、证明题及应用题等,综合性较强,所以数学成为很多人的“死穴”。特别是数学中的概率论与数理统计是令大多数考生头疼但又非常关键的一部分,关系到考生在选拔性考试中的竞争力强弱,对中等水平的考生来说,尤为如此。考生在数学科目的复习安排上,要先从概率论与数理统计开始,一节一节地复习,一个概念一个概念地领会,一个题一个题地做,以达到正确理解和掌握基本概念、基本理论和基本方法的目的。下面广东自学考试招生网为大家总结了一些常考题型:

  常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

  (1)确定事件间的关系,进行事件的运算;

  (2)利用事件的关系进行概率计算;

  (3)利用概率的性质证明概率等式或计算概率;

  (4)有关古典概型、几何概型的概率计算;

  (5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

  (6)有关事件独立性的证明和计算概率;

  (7)有关独重复试验及伯努利概率型的计算;

  (8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

  (9)由给定的试验求随机变量的分布;

  (10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

  (11)求随机变量函数的分布(12)确定二维随机变量的分布;

  (13)利用二维均匀分布和正态分布计算概率;

  (14)求二维随机变量的边缘分布、条件分布;

  (15)判断随机变量的独立性和计算概率;

  (16)求两个独立随机变量函数的分布;

  (17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

  (18)求随机变量函数的数学期望;

  (19)求两个随机变量的协方差、相关系数并判断相关性;

  (20)求随机变量的矩和协方差矩阵;

  (21)利用切比雪夫不等式推证概率不等式;

  (22)利用中心极限定理进行概率的近似计算;

  (23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

  (24)推证某些统计量(特别是正态总体统计量)的分布;

  (25)计算统计量的概率;

  (26)求总体分布中未知参数的矩估计量和极大似然估计量;

  (27)判断估计量的无偏性、有效性和一致性;

  (28)求单个或两个正态总体参数的置信区间;

  (29)对单个或两个正态总体参数假设进行显著性检验;

  (30)利用χ2检验法对总体分布假设进行检验。

将文章分享到: